Search results
Results from the WOW.Com Content Network
Individual quantum dots can be created from two-dimensional electron or hole gases present in remotely doped quantum wells or semiconductor heterostructures called lateral quantum dots. The sample surface is coated with a thin layer of resist and a lateral pattern is then defined in the resist by electron beam lithography .
Silicon quantum dots are metal-free biologically compatible quantum dots with photoluminescence emission maxima that are tunable through the visible to near-infrared spectral regions. These quantum dots have unique properties arising from their indirect band gap , including long-lived luminescent excited-states and large Stokes shifts .
Zeeman-energy mediated coupling of spin and orbital motions is used in spintronics for controlling electron spins in quantum dots through electric dipole spin resonance. [ 12 ] Metrology
Bound states in the forbidden zone, where there are no finite solutions at infinity, are widely known (atoms, quantum dots, defects in semiconductors). For solutions in a continuum that are associated with this continuum, resonant states [1] are known, which decay (lose energy) over time. They can be excited, for example, by an incident wave ...
This article refers to the wetting layer connected to the growth of self-assembled quantum dots (e.g. InAs on GaAs). These quantum dots form on top of the wetting layer. The wetting layer can influence the states of the quantum dot for applications in quantum information processing and quantum computation.
The quantum mind or quantum consciousness is a group of hypotheses proposing that local physical laws and interactions from classical mechanics or connections between neurons alone cannot explain consciousness, [1] positing instead that quantum-mechanical phenomena, such as entanglement and superposition that cause nonlocalized quantum effects, interacting in smaller features of the brain than ...
[7] In the experiment they used quantum dots that were grown between two mirrors in the cavity. Thus the quantum dot was not placed in the cavity, but instead created in it. They then coupled a strong in-plane polarized tunable continuous-wave laser to the quantum dot and were able to observe resonance fluorescence from the quantum dot.
Therefore, the quantum dot is an emitter of single photons. A key challenge in making a good single-photon source is to make sure that the emission from the quantum dot is collected efficiently. To do that, the quantum dot is placed in an optical cavity. The cavity can, for instance, consist of two DBRs in a micropillar (Fig. 1).