Search results
Results from the WOW.Com Content Network
The nearest neighbour algorithm is easy to implement and executes quickly, but it can sometimes miss shorter routes which are easily noticed with human insight, due to its "greedy" nature. As a general guide, if the last few stages of the tour are comparable in length to the first stages, then the tour is reasonable; if they are much greater ...
In computer science, locality-sensitive hashing (LSH) is a fuzzy hashing technique that hashes similar input items into the same "buckets" with high probability. [1] ( The number of buckets is much smaller than the universe of possible input items.) [1] Since similar items end up in the same buckets, this technique can be used for data clustering and nearest neighbor search.
Nearest neighbor search (NNS), as a form of proximity search, is the optimization problem of finding the point in a given set that is closest (or most similar) to a given point. Closeness is typically expressed in terms of a dissimilarity function: the less similar the objects, the larger the function values.
MATLAB was created in the 1970s by Cleve Moler, who was chairman of the computer science department at the University of New Mexico at the time. It was a free tool for academics. Jack Little, who would eventually set up the company, came across the tool while he was a graduate student in electrical engineering at Stanford University.
Nearest-neighbor interpolation (also known as proximal interpolation or, in some contexts, point sampling) is a simple method of multivariate interpolation in one or more dimensions. Interpolation is the problem of approximating the value of a function for a non-given point in some space when given the value of that function in points around ...
The local outlier factor is based on a concept of a local density, where locality is given by k nearest neighbors, whose distance is used to estimate the density. By comparing the local density of an object to the local densities of its neighbors, one can identify regions of similar density, and points that have a substantially lower density ...
The nearest neighbor graph (NNG) is a directed graph defined for a set of points in a metric space, such as the Euclidean distance in the plane. The NNG has a vertex for each point, and a directed edge from p to q whenever q is a nearest neighbor of p , a point whose distance from p is minimum among all the given points other than p itself.
In the theory of cluster analysis, the nearest-neighbor chain algorithm is an algorithm that can speed up several methods for agglomerative hierarchical clustering.These are methods that take a collection of points as input, and create a hierarchy of clusters of points by repeatedly merging pairs of smaller clusters to form larger clusters.