Search results
Results from the WOW.Com Content Network
The map folding and stamp folding problems are related to a problem in the mathematics of origami of whether a square with a crease pattern can be folded to a flat figure. If a folding direction (either a mountain fold or a valley fold ) is assigned to each crease of a strip of stamps, it is possible to test whether the result can be folded ...
The fold-and-cut problem asks what shapes can be obtained by folding a piece of paper flat, and making a single straight complete cut. The solution, known as the fold-and-cut theorem, states that any shape with straight sides can be obtained. A practical problem is how to fold a map so that it may be manipulated with minimal effort or movements.
Although Kawasaki's theorem completely describes the folding patterns that have flat-folded states, it does not describe the folding process needed to reach that state. For some (multi-vertex) folding patterns, it is necessary to curve or bend the paper while transforming it from a flat sheet to its flat-folded state, rather than keeping the ...
The regular paperfolding sequence corresponds to folding a strip of paper consistently in the same direction. If we allow the direction of the fold to vary at each step we obtain a more general class of sequences. Given a binary sequence (f i), we can define a general paperfolding sequence with folding instructions (f i).
The napkin folding problem is a problem in geometry and the mathematics of paper folding that explores whether folding a square or a rectangular napkin can increase its perimeter. The problem is known under several names, including the Margulis napkin problem , suggesting it is due to Grigory Margulis , and the Arnold's rouble problem referring ...
Maekawa's theorem is a theorem in the mathematics of paper folding named after Jun Maekawa. It relates to flat-foldable origami crease patterns and states that at every vertex, the numbers of valley and mountain folds always differ by two in either direction. [1] The same result was also discovered by Jacques Justin [2] and, even earlier, by S ...
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011.
Geometric Folding Algorithms: Linkages, Origami, Polyhedra is a monograph on the mathematics and computational geometry of mechanical linkages, paper folding, and polyhedral nets, by Erik Demaine and Joseph O'Rourke. It was published in 2007 by Cambridge University Press (ISBN 978-0-521-85757-4).