Ads
related to: solving life problems involving area of polygons and triangles worksheetteacherspayteachers.com has been visited by 100K+ users in the past month
- Free Resources
Download printables for any topic
at no cost to you. See what's free!
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Free Resources
Search results
Results from the WOW.Com Content Network
Because each special triangle has area , a polygon of area will be subdivided into special triangles. [ 5 ] The subdivision of the polygon into triangles forms a planar graph , and Euler's formula V − E + F = 2 {\displaystyle V-E+F=2} gives an equation that applies to the number of vertices, edges, and faces of any planar graph.
In geometry, calculating the area of a triangle is an elementary problem encountered often in many different situations. The best known and simplest formula is T = b h / 2 , {\displaystyle T=bh/2,} where b is the length of the base of the triangle, and h is the height or altitude of the triangle.
It is easy to find an n-equidissection of a triangle for all n.As a result, if a polygon has an m-equidissection, then it also has an mn-equidissection for all n.In fact, often a polygon's spectrum consists precisely of the multiples of some number m; in this case, both the spectrum and the polygon are called principal and the spectrum is denoted . [2]
The most common version uses the concept of "equidecomposability" of polygons: two polygons are equidecomposable if they can be split into finitely many triangles that only differ by some isometry (in fact only by a combination of a translation and a rotation). In this case the Wallace–Bolyai–Gerwien theorem states that two polygons are ...
A partition into triangles of equal area is called an equidissection. Most polygons cannot be equidissected, and those that can often have restrictions on the possible numbers of triangles. For example, Monsky's theorem states that there is no odd equidissection of a square. [1]
The quotients formed by the area of these polygons divided by the square of the circle radius can be made arbitrarily close to π as the number of polygon sides becomes large, proving that the area inside the circle of radius r is πr 2, π being defined as the ratio of the circumference to the diameter (C/d).
A polygon ear. One way to triangulate a simple polygon is based on the two ears theorem, as the fact that any simple polygon with at least 4 vertices without holes has at least two "ears", which are triangles with two sides being the edges of the polygon and the third one completely inside it. [5]
Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]
Ads
related to: solving life problems involving area of polygons and triangles worksheetteacherspayteachers.com has been visited by 100K+ users in the past month