Search results
Results from the WOW.Com Content Network
Symbol Name Meaning SI unit of measure alpha: alpha particle: angular acceleration: radian per second squared (rad/s 2) fine-structure constant: unitless beta: velocity in terms of the speed of light c: unitless beta particle: gamma: Lorentz factor: unitless photon: gamma ray: shear strain: radian
More Magic Triangle image mnemonics in the style of a cheat-sheet for high-school physics – in the SVG file, hover over a symbol for its meaning and formula. This is a categorized list of physics mnemonics .
Also angular speed, radial frequency, circular frequency, orbital frequency, radian frequency, and pulsatance. A scalar measure of rotation rate. It refers to the angular displacement per unit time (e.g. in rotation) or the rate of change of the phase of a sinusoidal waveform (e.g. in oscillations and waves), or as the rate of change of the ...
The table usually lists only one name and symbol that is most commonly used. The final column lists some special properties that some of the quantities have, such as their scaling behavior (i.e. whether the quantity is intensive or extensive ), their transformation properties (i.e. whether the quantity is a scalar , vector , matrix or tensor ...
For cyclical phenomena such as oscillations, waves, or for examples of simple harmonic motion, the term frequency is defined as the number of cycles or repetitions per unit of time. The conventional symbol for frequency is f or ν (the Greek letter nu) is also used. [3] The period T is the time taken to complete one cycle of an oscillation or ...
A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.
Natural frequency, measured in terms of eigenfrequency, is the rate at which an oscillatory system tends to oscillate in the absence of disturbance. A foundational example pertains to simple harmonic oscillators , such as an idealized spring with no energy loss wherein the system exhibits constant-amplitude oscillations with a constant frequency.
Because the gravitational wave frequency is determined by orbital frequency, the chirp mass also determines the frequency evolution of the gravitational wave signal emitted during a binary's inspiral phase. In gravitational wave data analysis, it is easier to measure the chirp mass than the two component masses alone.