enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Friedmann equations - Wikipedia

    en.wikipedia.org/wiki/Friedmann_equations

    This metric is called the Friedmann–Lemaître–Robertson–Walker (FLRW) metric. The parameter k discussed below takes the value 0, 1, −1, or the Gaussian curvature, in these three cases respectively. It is this fact that allows us to sensibly speak of a "scale factor" a(t).

  3. Scale factor (cosmology) - Wikipedia

    en.wikipedia.org/wiki/Scale_factor_(cosmology)

    Scale factor (cosmology) The expansion of the universe is parametrized by a dimensionless scale factor . Also known as the cosmic scale factor or sometimes the Robertson–Walker scale factor, [1] this is a key parameter of the Friedmann equations. In the early stages of the Big Bang, most of the energy was in the form of radiation, and that ...

  4. Friedmann–Lemaître–Robertson–Walker metric - Wikipedia

    en.wikipedia.org/wiki/Friedmann–Lemaître...

    Astronomy portal. v. t. e. The Friedmann–Lemaître–Robertson–Walker metric (FLRW; / ˈfriːdmən ləˈmɛtrə ... /) is a metric based on an exact solution of the Einstein field equations of general relativity. The metric describes a homogeneous, isotropic, expanding (or otherwise, contracting) universe that is path-connected, but not ...

  5. Hubble's law - Wikipedia

    en.wikipedia.org/wiki/Hubble's_law

    In 1922, Alexander Friedmann derived his Friedmann equations from Einstein field equations, showing that the universe might expand at a rate calculable by the equations. [24] The parameter used by Friedmann is known today as the scale factor and can be considered as a scale invariant form of the proportionality constant of Hubble's law. Georges ...

  6. Lambda-CDM model - Wikipedia

    en.wikipedia.org/wiki/Lambda-CDM_model

    where ˙ is the time-derivative of the scale factor. The first Friedmann equation gives the expansion rate in terms of the matter+radiation density ρ {\displaystyle \rho } , the curvature k {\displaystyle k} , and the cosmological constant Λ {\displaystyle \Lambda } , [ 14 ]

  7. Comoving and proper distances - Wikipedia

    en.wikipedia.org/wiki/Comoving_and_proper_distances

    The comoving distance from an observer to a distant object (e.g. galaxy) can be computed by the following formula (derived using the Friedmann–Lemaître–Robertson–Walker metric): = ′ (′) where a(t′) is the scale factor, t e is the time of emission of the photons detected by the observer, t is the present time, and c is the speed of ...

  8. Equation of state (cosmology) - Wikipedia

    en.wikipedia.org/wiki/Equation_of_state_(cosmology)

    The equation of state may be used in Friedmann–Lemaître–Robertson–Walker (FLRW) equations to describe the evolution of an isotropic universe filled with a perfect fluid. If a {\displaystyle a} is the scale factor then ρ ∝ a − 3 ( 1 + w ) . {\displaystyle \rho \propto a^{-3(1+w)}.}

  9. Deceleration parameter - Wikipedia

    en.wikipedia.org/wiki/Deceleration_parameter

    e. The deceleration parameter in cosmology is a dimensionless measure of the cosmic acceleration of the expansion of space in a Friedmann–Lemaître–Robertson–Walker universe. It is defined by: where is the scale factor of the universe and the dots indicate derivatives by proper time. The expansion of the universe is said to be ...