enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prompt engineering - Wikipedia

    en.wikipedia.org/wiki/Prompt_engineering

    Few-shot learning [ edit ] A prompt may include a few examples for a model to learn from, such as asking the model to complete " maison → house, chat → cat, chien →" (the expected response being dog ), [ 33 ] an approach called few-shot learning .

  3. Few-shot learning - Wikipedia

    en.wikipedia.org/wiki/Few-shot_learning

    Few-shot learning and one-shot learning may refer to: Few-shot learning, a form of prompt engineering in generative AI; One-shot learning (computer vision)

  4. Neural machine translation - Wikipedia

    en.wikipedia.org/wiki/Neural_machine_translation

    A generative LLM can be prompted in a zero-shot fashion by just asking it to translate a text into another language without giving any further examples in the prompt. Or one can include one or several example translations in the prompt before asking to translate the text in question. This is then called one-shot or few-shot learning, respectively.

  5. GPT-3 - Wikipedia

    en.wikipedia.org/wiki/GPT-3

    GPT-3 is capable of performing zero-shot and few-shot learning (including one-shot). [ 1 ] In June 2022, Almira Osmanovic Thunström wrote that GPT-3 was the primary author on an article on itself, that they had submitted it for publication, [ 24 ] and that it had been pre-published while waiting for completion of its review.

  6. Zero-shot learning - Wikipedia

    en.wikipedia.org/wiki/Zero-shot_learning

    The name is a play on words based on the earlier concept of one-shot learning, in which classification can be learned from only one, or a few, examples. Zero-shot methods generally work by associating observed and non-observed classes through some form of auxiliary information, which encodes observable distinguishing properties of objects. [1]

  7. Natural language processing - Wikipedia

    en.wikipedia.org/wiki/Natural_language_processing

    Natural language processing (NLP) is a subfield of computer science and especially artificial intelligence.It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval, knowledge representation and computational linguistics, a subfield of linguistics.

  8. LangChain - Wikipedia

    en.wikipedia.org/wiki/LangChain

    LangChain was launched in October 2022 as an open source project by Harrison Chase, while working at machine learning startup Robust Intelligence. The project quickly garnered popularity, [3] with improvements from hundreds of contributors on GitHub, trending discussions on Twitter, lively activity on the project's Discord server, many YouTube tutorials, and meetups in San Francisco and London.

  9. Few-shot learning (natural language processing) - Wikipedia

    en.wikipedia.org/?title=Few-shot_learning...

    Language links are at the top of the page across from the title.