enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pendulum (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Pendulum_(mechanics)

    A pendulum is a body suspended from a fixed support such that it freely swings back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position.

  3. Pendulum - Wikipedia

    en.wikipedia.org/wiki/Pendulum

    "Simple gravity pendulum" model assumes no friction or air resistance. A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. [1] When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position.

  4. Restoring force - Wikipedia

    en.wikipedia.org/wiki/Restoring_force

    The restoring force is often referred to in simple harmonic motion. The force responsible for restoring original size and shape is called the restoring force. [1] [2] An example is the action of a spring. An idealized spring exerts a force proportional to the amount of deformation of the spring from its equilibrium length, exerted in a ...

  5. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    In mechanics and physics, simple harmonic motion (sometimes abbreviated as SHM) is a special type of periodic motion an object experiences by means of a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position.

  6. Seconds pendulum - Wikipedia

    en.wikipedia.org/wiki/Seconds_pendulum

    When a pendulum is displaced sideways from its resting equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position. When released, the restoring force combined with the pendulum's mass causes it to oscillate about the equilibrium position, swinging back and forth.

  7. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    Due to frictional force, the velocity decreases in proportion to the acting frictional force. While in a simple undriven harmonic oscillator the only force acting on the mass is the restoring force, in a damped harmonic oscillator there is in addition a frictional force which is always in a direction to oppose the motion.

  8. Duffing equation - Wikipedia

    en.wikipedia.org/wiki/Duffing_equation

    controls the amount of non-linearity in the restoring force; if =, the Duffing equation describes a damped and driven simple harmonic oscillator, γ {\displaystyle \gamma } is the amplitude of the periodic driving force; if γ = 0 {\displaystyle \gamma =0} the system is without a driving force, and

  9. Rayleigh–Lorentz pendulum - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Lorentz_pendulum

    Rayleigh–Lorentz pendulum (or Lorentz pendulum) is a simple pendulum, but subjected to a slowly varying frequency due to an external action (frequency is varied by varying the pendulum length), named after Lord Rayleigh and Hendrik Lorentz. [1] This problem formed the basis for the concept of adiabatic invariants in mechanics. On account of ...