Search results
Results from the WOW.Com Content Network
A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable.
is not widely used for industrial radiography as other nuclides, such as cobalt-60 or iridium-192, offer higher radiation output for a given volume. Iodine-131 is another important gamma-emitting radionuclide produced as a fission product. With a short half-life of 8 days, this radioisotope is not of practical use in radioactive sources in ...
This page lists radioactive nuclides by their half-life.
energy column The column labeled "energy" denotes the energy equivalent of the mass of a neutron minus the mass per nucleon of this nuclide (so all nuclides get a positive value) in MeV, formally: m n − m nuclide / A, where A = Z + N is the mass number. Note that this means that a higher "energy" value actually means that the nuclide has a ...
Most 131 I production is from neutron irradiation of a natural tellurium target in a nuclear reactor. Irradiation of natural tellurium produces almost entirely 131 I as the only radionuclide with a half-life longer than hours, since most lighter isotopes of tellurium become heavier stable isotopes, or else stable iodine or xenon.
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay.
The energy of gammas from 99m Tc is about the same as the radiation from a commercial diagnostic X-ray machine, although the number of gammas emitted results in radiation doses more comparable to X-ray studies like computed tomography. Technetium-99m has several features that make it safer than other possible isotopes.
In about 89.28% of events, it decays to calcium-40 (40 Ca) with emission of a beta particle (β −, an electron) with a maximum energy of 1.31 MeV and an antineutrino. In about 10.72% of events, it decays to argon-40 ( 40 Ar) by electron capture (EC), with the emission of a neutrino and then a 1.460 MeV photon .