Search results
Results from the WOW.Com Content Network
C Grade Nichrome is consistently silvery in colour, is corrosion-resistant, has a high melting point of about 1,400 °C (2,550 °F), and has an electrical resistivity of around 1.12 μΩ·m, which is around 66 times higher resistivity than copper of 16.78 nΩ·m. [3]
Melting point: 1420 °C ... It is also commonly called Nichrome 60 and is used for heating elements, resistance windings, and hot wire cutters. Chromel-R
Nichrome, a non-magnetic 80/20 alloy of nickel and chromium, is the most common resistance wire for heating purposes because it has a high resistivity and resistance to oxidation at high temperatures, up to 1,400 °C (2,550 °F). When used as a heating element, resistance wire is usually wound into coils.
The Gmelin rare earths handbook lists 1522 °C and 1550 °C as two melting points given in the literature, the most recent reference [Handbook on the chemistry and physics of rare earths, vol.12 (1989)] is given with 1529 °C.
As quoted in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Physical Properties of the Rare Earth Metals
When iron is added, the chromium nickel alloy becomes more ductile. The Nichrome and Chromel C are examples of an alloy containing iron. The composition typical of Nichrome is 60 Ni, 12 Cr, 26 Fe, 2 Mn and Chromel C, 64 Ni, 11 Cr, Fe 25. The melting temperature of these alloys are 1350 °C and 1390 °C, respectively. [20] [full citation needed]
Ordinary Kanthal FeCrAl alloy has a melting point of 1,425 °C (2,597 °F). Special grades can be used as high as 1,500 °C (2,730 °F). [2] Depending on specific composition the resistivity is about 1.4 μΩ·m and temperature coefficient is +49 ppm/K (+49 × 10 −6 K −1).
Usually a thin nichrome wire is used. Some applications also use platinum-silver alloy; other bridgewire materials in use are platinum, gold, silver, tungsten, etc. Care has to be taken when selecting the material as it is in direct contact with the pyrotechnic composition and should not undergo corrosion in such conditions.