Search results
Results from the WOW.Com Content Network
The first RSA numbers generated, from RSA-100 to RSA-500, were labeled according to their number of decimal digits. Later, beginning with RSA-576, binary digits are counted instead. An exception to this is RSA-617, which was created before the change in the numbering scheme. The numbers are listed in increasing order below.
The prime numbers are kept secret. Messages can be encrypted by anyone, via the public key, but can only be decrypted by someone who knows the private key. [1] The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers, the "factoring problem". Breaking RSA encryption is known as the RSA problem.
The RSA Factoring Challenge was a challenge put forward by RSA Laboratories on March 18, 1991 [1] to encourage research into computational number theory and the practical difficulty of factoring large integers and cracking RSA keys used in cryptography.
RSA (cryptosystem) (Rivest–Shamir–Adleman), for public-key encryption RSA Conference, annual gathering; RSA Factoring Challenge, for factoring a set of semi-prime numbers; RSA numbers, with two prime numbers as factors
The PKCS #1 standard defines the mathematical definitions and properties that RSA public and private keys must have. The traditional key pair is based on a modulus, n, that is the product of two distinct large prime numbers, p and q, such that =.
RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem, one of the oldest widely used for secure data transmission. The initialism "RSA" comes from the surnames of Ron Rivest , Adi Shamir and Leonard Adleman , who publicly described the algorithm in 1977.
More specifically, the RSA problem is to efficiently compute P given an RSA public key (N, e) and a ciphertext C ≡ P e (mod N). The structure of the RSA public key requires that N be a large semiprime (i.e., a product of two large prime numbers), that 2 < e < N, that e be coprime to φ(N), and that 0 ≤ C < N.
Setting up an RSA system involves choosing large prime numbers p and q, computing n = pq and k = φ(n), and finding two numbers e and d such that ed ≡ 1 (mod k). The numbers n and e (the "encryption key") are released to the public, and d (the "decryption key") is kept private.