Search results
Results from the WOW.Com Content Network
Semi-major axis. 17.737 au ... Halley's Comet is the only known short ... Researchers in 1981 attempting to calculate the past orbits of Halley by numerical ...
For elliptical orbits it can also be calculated from the periapsis and apoapsis since = and = (+), where a is the length of the semi-major axis. = + = / / + = + where: r a is the radius at apoapsis (also "apofocus", "aphelion", "apogee"), i.e., the farthest distance of the orbit to the center of mass of the system, which is a focus of the ellipse.
Also shown are: semi-major axis a, semi-minor axis b and semi-latus rectum p; center of ellipse and its two foci marked by large dots. For θ = 0°, r = r min and for θ = 180°, r = r max. Mathematically, an ellipse can be represented by the formula:
is the semi-major axis, is the standard gravitational parameter. Conclusions: For a given semi-major axis the specific orbital energy is independent of the eccentricity. Using the virial theorem we find: the time-average of the specific potential energy is equal to
The semi-major axis is known if the mean motion and the gravitational mass are known. [ 2 ] [ 3 ] It is also quite common to see either the mean anomaly ( M ) or the mean longitude ( L ) expressed directly, without either M 0 or L 0 as intermediary steps, as a polynomial function with respect to time.
is the length of the semi-major axis, is the standard gravitational parameter. Conclusions: For a given semi-major axis the specific orbital energy is independent of the eccentricity. Using the virial theorem to find: the time-average of the specific potential energy is equal to −2ε
Orbit determination has a long history, beginning with the prehistoric discovery of the planets and subsequent attempts to predict their motions. Johannes Kepler used Tycho Brahe's careful observations of Mars to deduce the elliptical shape of its orbit and its orientation in space, deriving his three laws of planetary motion in the process.
Newton also applied his theorem to the planet Mercury, [26] which has an eccentricity ε of roughly 0.21, and suggested that it may pertain to Halley's comet, whose orbit has an eccentricity of roughly 0.97. [25] A qualitative justification for this extrapolation of his method has been suggested by Valluri, Wilson and Harper. [25]