enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Halley's Comet - Wikipedia

    en.wikipedia.org/wiki/Halley's_Comet

    Semi-major axis. 17.737 au ... Halley's Comet is the only known short ... Researchers in 1981 attempting to calculate the past orbits of Halley by numerical ...

  3. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Also shown are: semi-major axis a, semi-minor axis b and semi-latus rectum p; center of ellipse and its two foci marked by large dots. For θ = 0°, r = r min and for θ = 180°, r = r max. Mathematically, an ellipse can be represented by the formula: = + ⁡,

  4. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section.

  5. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    is the semi-major axis, is the standard gravitational parameter. Conclusions: For a given semi-major axis the specific orbital energy is independent of the eccentricity. Using the virial theorem we find: the time-average of the specific potential energy is equal to

  6. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    For elliptical orbits it can also be calculated from the periapsis and apoapsis since = and = (+), where a is the length of the semi-major axis. = + = / / + = + where: r a is the radius at apoapsis (also "apofocus", "aphelion", "apogee"), i.e., the farthest distance of the orbit to the center of mass of the system, which is a focus of the ellipse.

  7. Elliptic orbit - Wikipedia

    en.wikipedia.org/wiki/Elliptic_orbit

    is the length of the semi-major axis. Conclusions: The orbital period is equal to that for a circular orbit with the orbital radius equal to the semi-major axis (), For a given semi-major axis the orbital period does not depend on the eccentricity (See also: Kepler's third law).

  8. Orbital elements - Wikipedia

    en.wikipedia.org/wiki/Orbital_elements

    The semi-major axis is known if the mean motion and the gravitational mass are known. [ 2 ] [ 3 ] It is also quite common to see either the mean anomaly ( M ) or the mean longitude ( L ) expressed directly, without either M 0 or L 0 as intermediary steps, as a polynomial function with respect to time.

  9. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    a is the orbit's semi-major axis; G is the gravitational constant, M is the mass of the more massive body. For all ellipses with a given semi-major axis the orbital period is the same, regardless of eccentricity. Inversely, for calculating the distance where a body has to orbit in order to have a given orbital period T:

  1. Related searches halley's comet semi major axis equation formula calculator math word

    semi minor axis equationhalley's comet semi major axis equation formula calculator math word problems
    semi major axis