enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadratic residue - Wikipedia

    en.wikipedia.org/wiki/Quadratic_residue

    The quadratic excess E ( p) is the number of quadratic residues on the range (0, p /2) minus the number in the range ( p /2, p) (sequence A178153 in the OEIS ). For p congruent to 1 mod 4, the excess is zero, since −1 is a quadratic residue and the residues are symmetric under r ↔ p − r.

  3. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...

  4. Quadratic reciprocity - Wikipedia

    en.wikipedia.org/wiki/Quadratic_reciprocity

    The former are ≡ ±1 (mod 5) and the latter are ≡ ±2 (mod 5). Since the only residues (mod 5) are ±1, we see that 5 is a quadratic residue modulo every prime which is a residue modulo 5. −5 is in rows 3, 7, 23, 29, 41, 43, and 47 but not in rows 11, 13, 17, 19, 31, or 37.

  5. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    This conjecture is known as Lemoine's conjecture and is also called Levy's conjecture. The Goldbach conjecture for practical numbers, a prime-like sequence of integers, was stated by Margenstern in 1984, [ 32] and proved by Melfi in 1996: [ 33] every even number is a sum of two practical numbers.

  6. Multiplicative order - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_order

    The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Zn; it has φ ( n) elements, φ being Euler's totient function, and is denoted as U ( n ...

  7. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    Contents. Primitive root modulo n. In modular arithmetic, a number g is a primitive root modulon if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which gk ≡ a (mod n ).

  8. Euler's criterion - Wikipedia

    en.wikipedia.org/wiki/Euler's_criterion

    5 2 = 25 ≡ 8 (mod 17) 6 2 = 36 ≡ 2 (mod 17) 7 2 = 49 ≡ 15 (mod 17) 8 2 = 64 ≡ 13 (mod 17). So the set of the quadratic residues modulo 17 is {1,2,4,8,9,13,15,16}. Note that we did not need to calculate squares for the values 9 through 16, as they are all negatives of the previously squared values (e.g. 9 ≡ −8 (mod 17), so 9 2 ≡ ...

  9. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In mathematics, the result of the modulo operation is an equivalence class, and any member of the class may be chosen as representative; however, the usual representative is the least positive residue, the smallest non-negative integer that belongs to that class (i.e., the remainder of the Euclidean division ). [ 2]