Search results
Results from the WOW.Com Content Network
If the hundreds digit is odd, the number obtained by the last two digits must be 4 times an odd number. 352: 52 = 4 x 13. Add the last digit to twice the rest. The result must be divisible by 8. 56: (5 × 2) + 6 = 16. The last three digits are divisible by 8. [2][3] 34,152: Examine divisibility of just 152: 19 × 8.
Product of two numbers. Originally, a product was and is still the result of the multiplication of two or more numbers. For example, 15 is the product of 3 and 5. The fundamental theorem of arithmetic states that every composite number is a product of prime numbers, that is unique up to the order of the factors.
Four fours. Four fours is a mathematical puzzle, the goal of which is to find the simplest mathematical expression for every whole number from 0 to some maximum, using only common mathematical symbols and the digit four. No other digit is allowed. Most versions of the puzzle require that each expression have exactly four fours, but some ...
Interior angle Δθ = θ 1 −θ 2. The Pythagorean theorem is a special case of the more general theorem relating the lengths of sides in any triangle, the law of cosines, which states that where is the angle between sides and . [45] When is radians or 90°, then , and the formula reduces to the usual Pythagorean theorem.
Exponential functions with bases 2 and 1/2. The exponential function is a mathematical function denoted by () = or (where the argument x is written as an exponent).Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras.
Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...
Occam's razor. In philosophy, Occam's razor (also spelled Ockham's razor or Ocham's razor; Latin: novacula Occami) is the problem-solving principle that recommends searching for explanations constructed with the smallest possible set of elements. It is also known as the principle of parsimony or the law of parsimony (Latin: lex parsimoniae).
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]