Search results
Results from the WOW.Com Content Network
The idea becomes clearer by considering the general series 1 − 2x + 3x 2 − 4x 3 + 5x 4 − 6x 5 + &c. that arises while expanding the expression 1 ⁄ (1+x) 2, which this series is indeed equal to after we set x = 1.
1/2 + 1/4 + 1/8 + 1/16 + ⋯. First six summands drawn as portions of a square. The geometric series on the real line. In mathematics, the infinite series 1 2 + 1 4 + 1 8 + 1 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation ...
The partial sums of the series 1 + 2 + 3 + 4 + 5 + 6 + ⋯ are 1, 3, 6, 10, 15, etc.The nth partial sum is given by a simple formula: = = (+). This equation was known ...
Calculus. In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions: The first terms of the series sum to approximately , where is the natural logarithm and is the Euler–Mascheroni constant. Because the logarithm has arbitrarily large values, the harmonic series does not have a finite limit: it ...
The binomial approximation is useful for approximately calculating powers of sums of 1 and a small number x. It states that. It is valid when and where and may be real or complex numbers. The benefit of this approximation is that is converted from an exponent to a multiplicative factor. This can greatly simplify mathematical expressions (as in ...
1/2 − 1/4 + 1/8 − 1/16 + ⋯. In mathematics, the infinite series 1/2 − 1/4 + 1/8 − 1/16 + ⋯ is a simple example of an alternating series that converges absolutely. It is a geometric series whose first term is 1 2 and whose common ratio is − 1 2 , so its sum is.
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
1/4 + 1/16 + 1/64 + 1/256 + ⋯. Archimedes' figure with a = 3 4 . In mathematics, the infinite series 1 4 + 1 16 + 1 64 + 1 256 + ⋯ is an example of one of the first infinite series to be summed in the history of mathematics; it was used by Archimedes circa 250–200 BC. [1] As it is a geometric series ...