Search results
Results from the WOW.Com Content Network
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
Molar concentration (also called molarity, amount concentration or substance concentration) is a measure of the concentration of a chemical species, in particular, of a solute in a solution, in terms of amount of substance per unit volume of solution. In chemistry, the most commonly used unit for molarity is the number of moles per liter ...
In contrast, the concentration does change with , since the density of a solution and thus its volume are temperature-dependent. Defining the aqueous-phase composition via molality has the advantage that any temperature dependence of the Henry's law constant is a true solubility phenomenon and not introduced indirectly via a density change of ...
However pure ethanol has a molar volume at this temperature of 58.4 cc/mole (1.27 cc/g). If the solution were ideal , its volume would be the sum of the unmixed components. The volume of 0.2 kg pure ethanol is 0.2 kg x 1.27 L/kg = 0.254 L, and the volume of 0.8 kg pure water is 0.8 kg x 1.0018 L/kg = 0.80144 L, so the ideal solution volume ...
The molar conductivity of an electrolyte solution is defined as its conductivity divided by its molar concentration. [1][2] where: c is the molar concentration of the electrolyte. The SI unit of molar conductivity is siemens metres squared per mole (S m 2 mol −1). [2]
In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: mass concentration, molar concentration, number concentration, and volume concentration. [1] The concentration can refer to any kind of chemical mixture, but most frequently ...
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...