Search results
Results from the WOW.Com Content Network
Consider a long, thin rod of mass and length .To calculate the average linear mass density, ¯, of this one dimensional object, we can simply divide the total mass, , by the total length, : ¯ = If we describe the rod as having a varying mass (one that varies as a function of position along the length of the rod, ), we can write: = Each infinitesimal unit of mass, , is equal to the product of ...
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of ...
Besides deflection, the beam equation describes forces and moments and can thus be used to describe stresses. For this reason, the Euler–Bernoulli beam equation is widely used in engineering, especially civil and mechanical, to determine the strength (as well as deflection) of beams under bending.
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
For a nonrelativistic spin-1/2 particle of mass m, a representation of the time-independent Lévy-Leblond equation reads: [1] {+ = + =where c is the speed of light, E is the nonrelativistic particle energy, = is the momentum operator, and = (,,) is the vector of Pauli matrices, which is proportional to the spin operator =.
is the mass density function, with , ^ and () respectively the mass, the position operator and the mass density function of the -th particle of the system. R 0 {\displaystyle R_{0}} is a parameter introduced to smear the mass density function, required since taking a point-like mass distribution
In the general case a conservation equation can be also a system of this kind of equations (a vector equation) in the form: [10]: 43 + = where y is called the conserved (vector) quantity, ∇y is its gradient, 0 is the zero vector, and A(y) is called the Jacobian of the current density.
where m is the mass flow rate per unit area, ρ 1 and ρ 2 are the mass density of the fluid upstream and downstream of the wave, u 1 and u 2 are the fluid velocity upstream and downstream of the wave, p 1 and p 2 are the pressures in the two regions, and h 1 and h 2 are the specific (with the sense of per unit mass) enthalpies in the two regions.