enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    The wavelength of a sine wave, λ, can be measured between any two points with the same phase, such as between crests (on top), or troughs (on bottom), or corresponding zero crossings as shown. In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.

  3. Spatial frequency - Wikipedia

    en.wikipedia.org/wiki/Spatial_frequency

    The value of each data point in k-space is measured in the unit of 1/meter, i.e. the unit of spatial frequency. It is very common that the raw data in k-space shows features of periodic functions. The periodicity is not spatial frequency, but is temporal frequency. An MRI raw data matrix is composed of a series of phase-variable spin-echo signals.

  4. Frequency (statistics) - Wikipedia

    en.wikipedia.org/wiki/Frequency_(statistics)

    In statistics, the frequency or absolute frequency of an event is the number of times the observation has occurred/been recorded in an experiment or study. [ 1 ] : 12–19 These frequencies are often depicted graphically or tabular form.

  5. Wavenumber - Wikipedia

    en.wikipedia.org/wiki/Wavenumber

    It equals the spatial frequency. For example, a wavenumber in inverse centimeters can be converted to a frequency expressed in the unit gigahertz by multiplying by 29.979 2458 cm/ns (the speed of light, in centimeters per nanosecond); [5] conversely, an electromagnetic wave at 29.9792458 GHz has a wavelength of 1 cm in free space.

  6. Frequency - Wikipedia

    en.wikipedia.org/wiki/Frequency

    Even in dispersive media, the frequency f of a sinusoidal wave is equal to the phase velocity v of the wave divided by the wavelength λ of the wave: =. In the special case of electromagnetic waves in vacuum , then v = c , where c is the speed of light in vacuum, and this expression becomes f = c λ . {\displaystyle f={\frac {c}{\lambda }}.}

  7. Spectral density - Wikipedia

    en.wikipedia.org/wiki/Spectral_density

    The spectral centroid of a signal is the midpoint of its spectral density function, i.e. the frequency that divides the distribution into two equal parts. The spectral edge frequency (SEF), usually expressed as "SEF x", represents the frequency below which x percent of the total power of a given signal are located; typically, x is in the range ...

  8. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.

  9. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency.