Search results
Results from the WOW.Com Content Network
For example, a wavenumber in inverse centimeters can be converted to a frequency expressed in the unit gigahertz by multiplying by 29.979 2458 cm/ns (the speed of light, in centimeters per nanosecond); [5] conversely, an electromagnetic wave at 29.9792458 GHz has a wavelength of 1 cm in free space.
The wavelength of visible light ranges from deep red, roughly 700 nm, to violet, roughly 400 nm ... Conversion: Wavelength to Frequency and vice versa – Sound waves ...
Photon energy is directly proportional to frequency. [1] = where is energy (joules in the SI system) [2] is the Planck constant; is frequency [2] This equation is known as the Planck relation. Additionally, using equation f = c/λ, = where
In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.
The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.
The einstein (symbol E) is an obsolete unit with two conflicting definitions. It was originally defined as the energy in one mole of photons (6.022 × 10 23 photons). [1] [2] Because energy is inversely proportional to wavelength, the unit is frequency dependent.
The relative spectral flux density is also useful if we wish to compare a source's flux density at one wavelength with the same source's flux density at another wavelength; for example, if we wish to demonstrate how the Sun's spectrum peaks in the visible part of the EM spectrum, a graph of the Sun's relative spectral flux density will suffice.
Its frequency is thus the Lyman-alpha hydrogen frequency, increased by a factor of (Z − 1) 2. This formula of f = c / λ = (Lyman-alpha frequency) ⋅ ( Z − 1) 2 is historically known as Moseley's law (having added a factor c to convert wavelength to frequency), and can be used to predict wavelengths of the K α (K-alpha) X-ray spectral ...