Search results
Results from the WOW.Com Content Network
In the exosphere, beginning at about 600 km (375 mi) above sea level, the atmosphere turns into space, although, by the judging criteria set for the definition of the Kármán line (100 km), most of the thermosphere is part of space. The border between the thermosphere and exosphere is known as the thermopause.
The variation in temperature that occurs from the highs of the day to the cool of nights is called diurnal temperature variation. Temperature ranges can also be based on periods of a month or a year. The size of ground-level atmospheric temperature ranges depends on several factors, such as: Average air temperature; Average humidity
The lower part of the thermosphere, from 80 to 550 kilometres (50 to 342 mi) above Earth's surface, contains the ionosphere. The temperature of the thermosphere gradually increases with height and can rise as high as 1500 °C (2700 °F), though the gas molecules are so far apart that its temperature in the usual sense is not
This increase of temperature with altitude is characteristic of the stratosphere; its resistance to vertical mixing means that it is stratified. Within the stratosphere temperatures increase with altitude (see temperature inversion); the top of the stratosphere has a temperature of about 270 K (−3°C or 26.6°F). [9] [page needed]
In the mesosphere, temperature decreases as altitude increases. This characteristic is used to define limits: it begins at the top of the stratosphere (sometimes called the stratopause ), and ends at the mesopause , which is the coldest part of Earth's atmosphere , with temperatures below −143 °C (−225 °F; 130 K).
2 (θ), with θ the co-latitude, etc. [9] Within the thermosphere, mode (1, −2) is the predominant mode reaching diurnal temperature amplitudes at the exosphere of at least 140 K and horizontal winds of the order of 100 m/s and more increasing with geomagnetic activity. [11]
World leaders are meeting in Paris this month in what amounts to a last-ditch effort to avert the worst ravages of climate change. Climatologists now say that the best case scenario — assuming immediate and dramatic emissions curbs — is that planetary surface temperatures will increase by at least 2 degrees Celsius in the coming decades.
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...