enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    Additionally, the relationship between energy and information formulated by Brillouin has been proposed as a connection between the amount of bits that the brain processes and the energy it consumes: Collell and Fauquet [12] argued that De Castro [13] analytically found the Landauer limit as the thermodynamic lower bound for brain computations ...

  3. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The information gain in decision trees (,), which is equal to the difference between the entropy of and the conditional entropy of given , quantifies the expected information, or the reduction in entropy, from additionally knowing the value of an attribute . The information gain is used to identify which attributes of the dataset provide the ...

  4. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    To do this, one must acknowledge the difference between the measured entropy of a system—which depends only on its macrostate (its volume, temperature etc.)—and its information entropy, [6] which is the amount of information (number of computer bits) needed to describe the exact microstate of the system.

  5. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    The relationship between entropy, order, and disorder in the Boltzmann equation is so clear among physicists that according to the views of thermodynamic ecologists Sven Jorgensen and Yuri Svirezhev, "it is obvious that entropy is a measure of order or, most likely, disorder in the system."

  6. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    The Kullback–Leibler divergence (or information divergence, information gain, or relative entropy) is a way of comparing two distributions: a "true" probability distribution ⁠ ⁠, and an arbitrary probability distribution ⁠ ⁠.

  7. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    This relationship was expressed in an increment of entropy that is equal to incremental heat transfer divided by temperature. Entropy was found to vary in the thermodynamic cycle but eventually returned to the same value at the end of every cycle. Thus it was found to be a function of state, specifically a thermodynamic state of the system.

  8. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    The joint information is equal to the mutual information plus the sum of all the marginal information (negative of the marginal entropies) for each particle coordinate. Boltzmann's assumption amounts to ignoring the mutual information in the calculation of entropy, which yields the thermodynamic entropy (divided by the Boltzmann constant).

  9. Introduction to entropy - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_entropy

    The connection between thermodynamic entropy and information entropy is given by Boltzmann's equation, which says that S = k B ln W. If we take the base-2 logarithm of W, it will yield the average number of questions we must ask about the microstate of the physical system in order to determine its macrostate. [13]