enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel , and a receiver.

  3. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    The defining expression for entropy in the theory of information established by Claude E. Shannon in 1948 is of the form: = ⁡, where is the probability of the message taken from the message space M, and b is the base of the logarithm used.

  4. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    In this context, either an information-theoretical measure, such as functional clusters (Gerald Edelman and Giulio Tononi's functional clustering model and dynamic core hypothesis (DCH) [47]) or effective information (Tononi's integrated information theory (IIT) of consciousness [48] [49] [50]), is defined (on the basis of a reentrant process ...

  5. Information theory and measure theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory_and...

    Many of the concepts in information theory have separate definitions and formulas for continuous and discrete cases. For example, entropy is usually defined for discrete random variables, whereas for continuous random variables the related concept of differential entropy, written (), is used (see Cover and Thomas, 2006, chapter 8).

  6. Conditional entropy - Wikipedia

    en.wikipedia.org/wiki/Conditional_entropy

    In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons , nats , or hartleys .

  7. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    In probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the " amount of information " (in units such as shannons ( bits ), nats or hartleys ) obtained about one random variable by observing the other random ...

  8. Rényi entropy - Wikipedia

    en.wikipedia.org/wiki/Rényi_entropy

    In information theory, the Rényi entropy is a quantity that generalizes various notions of entropy, including Hartley entropy, Shannon entropy, collision entropy, and min-entropy. The Rényi entropy is named after Alfréd Rényi , who looked for the most general way to quantify information while preserving additivity for independent events.

  9. Category:Entropy and information - Wikipedia

    en.wikipedia.org/wiki/Category:Entropy_and...

    To be distinguished from: Category:Thermodynamic entropy, for articles relating to entropy specifically in a thermodynamic context. Articles relating to entropy should generally be placed in one or the other of these categories, but not both (the main exception being Entropy in thermodynamics and information theory ).