Search results
Results from the WOW.Com Content Network
Box plot of the Michelson–Morley experiment, showing several summary statistics.. In descriptive statistics, summary statistics are used to summarize a set of observations, in order to communicate the largest amount of information as simply as possible.
If data are placed in order, then the lower quartile is central to the lower half of the data and the upper quartile is central to the upper half of the data. These quartiles are used to calculate the interquartile range, which helps to describe the spread of the data, and determine whether or not any data points are outliers.
The use of descriptive and summary statistics has an extensive history and, indeed, the simple tabulation of populations and of economic data was the first way the topic of statistics appeared. More recently, a collection of summarisation techniques has been formulated under the heading of exploratory data analysis : an example of such a ...
Exploratory data analysis is an analysis technique to analyze and investigate the data set and summarize the main characteristics of the dataset. Main advantage of EDA is providing the data visualization of data after conducting the analysis.
Automatic summarization is the process of shortening a set of data computationally, to create a subset (a summary) that represents the most important or relevant information within the original content. Artificial intelligence algorithms are commonly developed and employed to achieve this, specialized for different types of data.
A pivot table field list is provided to the user which lists all the column headers present in the data. For instance, if a table represents sales data of a company, it might include Date of sale, Sales person, Item sold, Color of item, Units sold, Per unit price, and Total price. This makes the data more readily accessible.
Two main statistical methods are used in data analysis: descriptive statistics, which summarize data from a sample using indexes such as the mean or standard deviation, and inferential statistics, which draw conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). [4]
R is a programming language for statistical computing and data visualization. It has been adopted in the fields of data mining, bioinformatics and data analysis. [9] The core R language is augmented by a large number of extension packages, containing reusable code, documentation, and sample data. R software is open-source and free software.