Search results
Results from the WOW.Com Content Network
A stirred BZ reaction mixture showing changes in color over time. The discovery of the phenomenon is credited to Boris Belousov.In 1951, while trying to find the non-organic analog to the Krebs cycle, he noted that in a mix of potassium bromate, cerium(IV) sulfate, malonic acid, and citric acid in dilute sulfuric acid, the ratio of concentration of the cerium(IV) and cerium(III) ions ...
A Belousov–Zhabotinsky reaction is one of several oscillating chemical systems, whose common element is the inclusion of bromine and an acid. An essential aspect of the BZ reaction is its so-called "excitability"—under the influence of stimuli, patterns develop in what would otherwise be a perfectly quiescent medium.
The Oregonator is a theoretical model for a type of autocatalytic reaction. The Oregonator is the simplest realistic model of the chemical dynamics of the oscillatory Belousov–Zhabotinsky reaction. [1] It was created by Richard Field and Richard M. Noyes at the University of Oregon. [2] It is a portmanteau of Oregon and oscillator.
It is a popular redox indicator for visualizing oscillatory Belousov–Zhabotinsky reactions. Ferroin is suitable as a redox indicator, as the color change is reversible, very pronounced and rapid, and the ferroin solution is stable up to 60 °C. It is the main indicator used in cerimetry. [4]
In 1958 Boris Pavlovich Belousov discovered the Belousov–Zhabotinsky reaction (BZ reaction). [2] The BZ reaction is suitable as a demonstration, but it too met with skepticism, largely because such oscillatory behaviour was unheard of up to that time, until Anatol Zhabotinsky learned of it and in 1964 published his research. [3]
A chemical computer, also called a reaction-diffusion computer, Belousov–Zhabotinsky (BZ) computer, or gooware computer, is an unconventional computer based on a semi-solid chemical "soup" where data are represented by varying concentrations of chemicals. [1] The computations are performed by naturally occurring chemical reactions.
For a variety of systems, reaction–diffusion equations with more than two components have been proposed, e.g. the Belousov–Zhabotinsky reaction, [14] for blood clotting, [15] fission waves [16] or planar gas discharge systems.
If spatial effects are taken into account through a reaction–diffusion equation, long-range correlations and spatially ordered patterns arise, [6] such as in the case of the Belousov–Zhabotinsky reaction. Systems with such dynamic states of matter that arise as the result of irreversible processes are dissipative structures.