Search results
Results from the WOW.Com Content Network
Phase modulation (PM) is a modulation pattern for conditioning communication signals for transmission. It encodes a message signal as variations in the instantaneous phase of a carrier wave . Phase modulation is one of the two principal forms of angle modulation , together with frequency modulation .
A constellation diagram is a representation of a signal modulated by a digital modulation scheme such as quadrature amplitude modulation or phase-shift keying. [1] It displays the signal as a two-dimensional xy -plane scatter diagram in the complex plane at symbol sampling instants.
The phase modulation (φ(t), not shown) is a non-linearly increasing function from 0 to π /2 over the interval 0 < t < 16. The two amplitude-modulated components are known as the in-phase component (I, thin blue, decreasing) and the quadrature component (Q, thin red, increasing).
Phase-shift keying (PSK) is a digital modulation process which conveys data by changing (modulating) the phase of a constant frequency carrier wave. The modulation is accomplished by varying the sine and cosine inputs at a precise time. It is widely used for wireless LANs, RFID and Bluetooth communication.
Amplitude and phase-shift keying (APSK) is a digital modulation scheme that conveys data by modulating both the amplitude and the phase of a carrier wave. In other words, it combines both amplitude-shift keying (ASK) and phase-shift keying (PSK).
An example of series RLC circuit and respective phasor diagram for a specific ω. The arrows in the upper diagram are phasors, drawn in a phasor diagram ( complex plane without axis shown), which must not be confused with the arrows in the lower diagram, which are the reference polarity for the voltages and the reference direction for the current .
Pulse-width modulation (e.g. as used by WWVB) M: Pulse-position modulation: N: Unmodulated carrier (steady, single-frequency signal) P: Sequence of pulses without modulation Q: Sequence of pulses, with phase or frequency modulation in each pulse R: Single-sideband with reduced or variable carrier: V: Combination of pulse modulation methods W
If the phase-offset/delay of the multiply-filter-divide system is known, it can be compensated for to recover the correct phase. In practice, applying this phase compensation is complicated. [4] In general, the modulation's order matches the nonlinear operator required to produce a clean carrier harmonic. As an example, consider a BPSK signal.