enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnitude (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Magnitude_(mathematics)

    By definition, all Euclidean vectors have a magnitude (see above). However, a vector in an abstract vector space does not possess a magnitude. A vector space endowed with a norm, such as the Euclidean space, is called a normed vector space. [8] The norm of a vector v in a normed vector space can be considered to be the magnitude of v.

  3. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    A three-dimensional vector can be specified in the following form, using unit vector notation: = ^ + ȷ ^ + ^ where v x , v y , and v z are the scalar components of v . Scalar components may be positive or negative; the absolute value of a scalar component is its magnitude.

  4. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    A vector is what is needed to "carry" the point A to the point B; the Latin word vector means "carrier". [4] It was first used by 18th century astronomers investigating planetary revolution around the Sun. [5] The magnitude of the vector is the distance between the two points, and the direction refers to the direction of displacement from A to B.

  5. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    A vector pointing from A to B. In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scaled to form a vector space.

  6. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    Following Donoho's notation, the zero "norm" of is simply the number of non-zero coordinates of , or the Hamming distance of the vector from zero. When this "norm" is localized to a bounded set, it is the limit of p {\displaystyle p} -norms as p {\displaystyle p} approaches 0.

  7. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    The magnitude of a vector is denoted by ‖ ‖. The dot ... is a notation for the image of by the function/vector . This notion can be generalized ...

  8. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  9. Four-vector - Wikipedia

    en.wikipedia.org/wiki/Four-vector

    A four-vector A is a vector with a "timelike" component and three "spacelike" components, and can be written in various equivalent notations: [3] = (,,,) = + + + = + = where A α is the magnitude component and E α is the basis vector component; note that both are necessary to make a vector, and that when A α is seen alone, it refers strictly to the components of the vector.