Search results
Results from the WOW.Com Content Network
If the Markov chain is time-homogeneous, then the transition matrix P is the same after each step, so the k-step transition probability can be computed as the k-th power of the transition matrix, P k. If the Markov chain is irreducible and aperiodic, then there is a unique stationary distribution π. [41]
A doubly stochastic matrix is a square matrix of nonnegative real numbers with each row and column summing to 1. A substochastic matrix is a real square matrix whose row sums are all ; In the same vein, one may define a probability vector as a vector whose elements are nonnegative real numbers which sum to 1. Thus, each row of a right ...
According to the figure, a bull week is followed by another bull week 90% of the time, a bear week 7.5% of the time, and a stagnant week the other 2.5% of the time. Labeling the state space {1 = bull, 2 = bear, 3 = stagnant} the transition matrix for this example is
A Markov arrival process is defined by two matrices, D 0 and D 1 where elements of D 0 represent hidden transitions and elements of D 1 observable transitions. The block matrix Q below is a transition rate matrix for a continuous-time Markov chain. [5]
Change-of-basis matrix, associated with a change of basis for a vector space. Stochastic matrix , a square matrix used to describe the transitions of a Markov chain . State-transition matrix , a matrix whose product with the state vector x {\displaystyle x} at an initial time t 0 {\displaystyle t_{0}} gives x {\displaystyle x} at a later time t ...
As a prelude to a transition-probability definition, we first motivate the definition of a regular rate matrix. We will use the transition-rate matrix to specify the dynamics of the Markov chain by means of generating a collection of transition matrices on (), via the following theorem.
In probability theory, a transition-rate matrix (also known as a Q-matrix, [1] intensity matrix, [2] or infinitesimal generator matrix [3]) is an array of numbers describing the instantaneous rate at which a continuous-time Markov chain transitions between states.
For example, a series of simple observations, such as a person's location in a room, can be interpreted to determine more complex information, such as in what task or activity the person is performing. Two kinds of Hierarchical Markov Models are the Hierarchical hidden Markov model [2] and the Abstract Hidden Markov Model. [3]