Search results
Results from the WOW.Com Content Network
function Depth-Limited-Search-Backward(u, Δ, B, F) is prepend u to B if Δ = 0 then if u in F then return u (Reached the marked node, use it as a relay node) remove the head node of B return null foreach parent of u do μ ← Depth-Limited-Search-Backward(parent, Δ − 1, B, F) if μ null then return μ remove the head node of B return null
a depth-first search starting at the node A, assuming that the left edges in the shown graph are chosen before right edges, and assuming the search remembers previously visited nodes and will not repeat them (since this is a small graph), will visit the nodes in the following order: A, B, D, F, E, C, G.
Examples of the latter include the exhaustive methods such as depth-first search and breadth-first search, as well as various heuristic-based search tree pruning methods such as backtracking and branch and bound. Unlike general metaheuristics, which at best work only in a probabilistic sense, many of these tree-search methods are guaranteed to ...
Dijkstra's algorithm, as another example of a uniform-cost search algorithm, can be viewed as a special case of A* where = for all x. [ 12 ] [ 13 ] General depth-first search can be implemented using A* by considering that there is a global counter C initialized with a very large value.
It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the remaining cost to get to the goal from the A* search algorithm. Since it is a depth-first search algorithm, its memory usage is lower than in A*, but unlike ordinary iterative deepening search, it ...
The rating of best Go-playing programs on the KGS server since 2007. Since 2006, all the best programs use Monte Carlo tree search. [14]In 2006, inspired by its predecessors, [15] Rémi Coulom described the application of the Monte Carlo method to game-tree search and coined the name Monte Carlo tree search, [16] L. Kocsis and Cs.
C. C (programming language) C dynamic memory allocation; C file input/output; C syntax; C data types; C23 (C standard revision) Callback (computer programming) CIE 1931 color space; Coalesced hashing; Code injection; Comment (computer programming) Composite data type; Conditional (computer programming) Const (computer programming) Constant ...
The following is the skeleton of a generic branch and bound algorithm for minimizing an arbitrary objective function f. [3] To obtain an actual algorithm from this, one requires a bounding function bound, that computes lower bounds of f on nodes of the search tree, as well as a problem-specific branching rule.