Search results
Results from the WOW.Com Content Network
Another distinction is between linear and nonlinear: Linear elements – these are elements in which the constituent relation, the relation between voltage and current, is a linear function. They obey the superposition principle. Examples of linear elements are resistances, capacitances, inductances, and linear-dependent sources.
A linear circuit is one that has no nonlinear electronic components in it. [1] [2] [3] Examples of linear circuits are amplifiers, differentiators, and integrators, linear electronic filters, or any circuit composed exclusively of ideal resistors, capacitors, inductors, op-amps (in the "non-saturated" region), and other "linear" circuit elements.
If all circuit components were linear or the circuit was linearized beforehand, the equation system at this point is a system of linear equations and is solved with numerical linear algebra methods. Otherwise, it is a nonlinear algebraic equation system and is solved with nonlinear numerical methods such as Root-finding algorithms.
A transfer matrix can be obtained for any linear system to analyze its dynamics and other properties; each element of a transfer matrix is a transfer function relating a particular input variable to an output variable.
Lagrange elements of any order, continuous and discontinuous; Nedelec and Raviart-Thomas elements of any order; BDM and Bernstein; elements composed of other elements. Lagrange elements, p-elements up to 10th order, Hcurl conforming elements (linear and quadratic) for Lagrange, Hierarchic, Discontinuous Monomials, Nedelec
A chemical element, often simply called an element, is a type of atom which has a specific number of protons in its atomic nucleus (i.e., a specific atomic number, or Z). [ 1 ] The definitive visualisation of all 118 elements is the periodic table of the elements , whose history along the principles of the periodic law was one of the founding ...
In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. [1] [2] Nonlinear problems are of interest to engineers, biologists, [3] [4] [5] physicists, [6] [7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature. [8]
Linear systems typically exhibit features and properties that are much simpler than the nonlinear case. As a mathematical abstraction or idealization, linear systems find important applications in automatic control theory, signal processing , and telecommunications .