enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Return period - Wikipedia

    en.wikipedia.org/wiki/Return_period

    The theoretical return period between occurrences is the inverse of the average frequency of occurrence. For example, a 10-year flood has a 1/10 = 0.1 or 10% chance of being exceeded in any one year and a 50-year flood has a 0.02 or 2% chance of being exceeded in any one year.

  3. Frequency - Wikipedia

    en.wikipedia.org/wiki/Frequency

    The period (symbol T) is the interval of time between events, so the period is the reciprocal of the frequency: T = 1/f. [ 2 ] Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals ( sound ), radio waves , and light .

  4. Periodic function - Wikipedia

    en.wikipedia.org/wiki/Periodic_function

    Consider a real waveform consisting of superimposed frequencies, expressed in a set as ratios to a fundamental frequency, f: F = 1 ⁄ f [f 1 f 2 f 3... f N] where all non-zero elements ≥1 and at least one of the elements of the set is 1. To find the period, T, first find the least common denominator of all the elements in the set.

  5. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.

  6. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    The period and frequency are determined by the size of the mass m and the force constant k, while the amplitude and phase are determined by the starting position and velocity. The velocity and acceleration of a simple harmonic oscillator oscillate with the same frequency as the position, but with shifted phases. The velocity is maximal for zero ...

  7. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  8. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Fourier...

    From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function. In simpler terms, when you take the DTFT of regularly-spaced samples of a continuous signal, you get repeating (and possibly overlapping) copies of the signal's frequency ...

  9. Duty cycle - Wikipedia

    en.wikipedia.org/wiki/Duty_cycle

    For example, a signal (10101010) has 50% duty cycle, because the pulse remains high for 1/2 of the period or low for 1/2 of the period. Similarly, for pulse (10001000) the duty cycle will be 25% because the pulse remains high only for 1/4 of the period and remains low for 3/4 of the period. Electrical motors typically use less than a 100% duty ...