Search results
Results from the WOW.Com Content Network
Provided the floating-point arithmetic is correctly rounded to nearest (with ties resolved any way), as is the default in IEEE 754, and provided the sum does not overflow and, if it underflows, underflows gradually, it can be proven that + = +. [1] [6] [2]
A solution to EPART consists of two parts, each of which has n/2 elements with a sum of T. It corresponds to an optimal solution of both MSSP variants: two subsets with a sum of (n+1)T, which is the largest possible. Similarly, each optimal solution of MSSP corresponds to a solution to EPART. Any non-optimal solution to MSSP leaves at least one ...
Conversely, given a solution to the SubsetSumZero instance, it must contain the −T (since all integers in S are positive), so to get a sum of zero, it must also contain a subset of S with a sum of +T, which is a solution of the SubsetSumPositive instance. The input integers are positive, and T = sum(S)/2.
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
Given such an instance, construct an instance of Partition in which the input set contains the original set plus two elements: z 1 and z 2, with z 1 = sum(S) and z 2 = 2T. The sum of this input set is sum(S) + z 1 + z 2 = 2 sum(S) + 2T, so the target sum for Partition is sum(S) + T. Suppose there exists a solution S′ to the SubsetSum instance
The approximation ratio in this context is the smallest sum in the solution returned by the algorithm, divided by the smallest sum in the optimal solution (the ratio is less than 1). For greedy number partitioning, if the numbers are not sorted then the worst-case approximation ratio is 1/k. [11]
The Sum and Product Puzzle, also known as the Impossible Puzzle because it seems to lack sufficient information for a solution, is a logic puzzle. It was first published in 1969 by Hans Freudenthal, [1] [2] and the name Impossible Puzzle was coined by Martin Gardner. [3] The puzzle is solvable, though not easily. There exist many similar puzzles.
The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...