Search results
Results from the WOW.Com Content Network
A generator matrix for a linear [,,]-code has format , where n is the length of a codeword, k is the number of information bits (the dimension of C as a vector subspace), d is the minimum distance of the code, and q is size of the finite field, that is, the number of symbols in the alphabet (thus, q = 2 indicates a binary code, etc.).
In mathematics, more specifically in numerical linear algebra, the biconjugate gradient method is an algorithm to solve systems of linear equations A x = b . {\displaystyle Ax=b.\,} Unlike the conjugate gradient method , this algorithm does not require the matrix A {\displaystyle A} to be self-adjoint , but instead one needs to perform ...
Example: The linear block code with the following generator matrix is a [,,] Hadamard code: = ( ). Hadamard code is a special case of Reed–Muller code . If we take the first column (the all-zero column) out from G H a d {\displaystyle {\boldsymbol {G}}_{\mathrm {Had} }} , we get [ 7 , 3 , 4 ] 2 {\displaystyle [7,3,4]_{2}} simplex code , which ...
In numerical linear algebra, the conjugate gradient squared method (CGS) is an iterative algorithm for solving systems of linear equations of the form =, particularly in cases where computing the transpose is impractical. [1]
In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite. The conjugate gradient method is often implemented as an iterative algorithm , applicable to sparse systems that are too large to be handled by a direct ...
The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation.
In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.
The Hadamard code is a linear code, and all linear codes can be generated by a generator matrix.This is a matrix such that () = holds for all {,}, where the message is viewed as a row vector and the vector-matrix product is understood in the vector space over the finite field.