enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance

    Bruker 700 MHz nuclear magnetic resonance (NMR) spectrometer. Nuclear Magnetic Resonance (NMR) basic principles. Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field [1]) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic ...

  3. Proton nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Proton_nuclear_magnetic...

    For example, the 1H signals for the protons in fluoromethane are split into a doublet by the fluorine atom; conversely, the fluorine-19 NMR spectrum of this compound shows a quartet due to being split by the three protons. Typical 2J coupling constants between fluorine and protons are 48 Hz or so; the strength of coupling declines to 2 Hz in 4J ...

  4. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK. Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.

  5. Magnetic inequivalence - Wikipedia

    en.wikipedia.org/wiki/Magnetic_inequivalence

    A classic example is the 1 H-NMR spectrum of 1,1-difluoroethylene. [5] The single 1 H-NMR signal is made complex by the 2 J H-H and two different 3 J H-F splittings. The 19 F-NMR spectrum will look identical. The other two difluoroethylene isomers give similarly complex spectra. [6]

  6. Nuclear magnetic resonance spectroscopy of proteins - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    One important problem using homonuclear nuclear magnetic resonance is overlap between peaks. This occurs when different protons have the same or very similar chemical shifts. This problem becomes greater as the protein becomes larger, so homonuclear nuclear magnetic resonance is usually restricted to small proteins or peptides. [citation needed]

  7. Two-dimensional nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Two-dimensional_nuclear...

    In HOESY, much like NOESY is used for the cross relaxation between nuclear spins. However, HOESY can offer information about other NMR active nuclei in a spatially relevant manner. Examples include any nuclei X{Y} or X→Y such as 1 H→ 13 C, 19 F→ 13 C, 31 P→ 13 C, or 77 Se→ 13 C.

  8. Quantum mechanics of nuclear magnetic resonance (NMR ...

    en.wikipedia.org/wiki/Quantum_mechanics_of...

    Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not zero, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.

  9. Fluorine-19 nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Fluorine-19_nuclear...

    The 19 F NMR chemical shifts span a range of about 800 ppm. For organofluorine compounds the range is narrower, being about −50 to −70 ppm (for CF 3 groups) to −200 to −220 ppm (for CH 2 F groups). The very wide spectral range can cause problems in recording spectra, such as poor data resolution and inaccurate integration.