Search results
Results from the WOW.Com Content Network
Most frequently, t statistics are used in Student's t-tests, a form of statistical hypothesis testing, and in the computation of certain confidence intervals. The key property of the t statistic is that it is a pivotal quantity – while defined in terms of the sample mean, its sampling distribution does not depend on the population parameters, and thus it can be used regardless of what these ...
Once the t value and degrees of freedom are determined, a p-value can be found using a table of values from Student's t-distribution. If the calculated p -value is below the threshold chosen for statistical significance (usually the 0.10, the 0.05, or 0.01 level), then the null hypothesis is rejected in favor of the alternative hypothesis.
The Student's t distribution plays a role in a number of widely used statistical analyses, including Student's t test for assessing the statistical significance of the difference between two sample means, the construction of confidence intervals for the difference between two population means, and in linear regression analysis.
the value of T can be compared with its expected value under the null hypothesis of 50, and since the sample size is large, a normal distribution can be used as an approximation to the sampling distribution either for T or for the revised test statistic T−50.
Under a frequentist hypothesis testing framework, this is done by calculating a test statistic (such as a t-statistic) for the dataset, which has a known theoretical probability distribution if there is no difference (the so called null hypothesis). If the actual value calculated on the sample is sufficiently unlikely to arise under the null ...
In statistics, particularly in hypothesis testing, the Hotelling's T-squared distribution (T 2), proposed by Harold Hotelling, [1] is a multivariate probability distribution that is tightly related to the F-distribution and is most notable for arising as the distribution of a set of sample statistics that are natural generalizations of the statistics underlying the Student's t-distribution.
The q-value can be interpreted as the false discovery rate (FDR): the proportion of false positives among all positive results. Given a set of test statistics and their associated q-values, rejecting the null hypothesis for all tests whose q-value is less than or equal to some threshold ensures that the expected value of the false discovery rate is .
This higher precision can lead to increased statistical power when used in statistical tests that compare the populations, such as the t-test. The square root of a pooled variance estimator is known as a pooled standard deviation (also known as combined standard deviation, composite standard deviation, or overall standard deviation).