enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    The rule for integration by parts is derived from the product rule, as is (a weak version of) the quotient rule. (It is a "weak" version in that it does not prove that the quotient is differentiable but only says what its derivative is if it is differentiable.)

  3. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and () The quotient rule states that the derivative of h(x) is

  4. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    2.4 Quotient rule for division by a scalar. 2.5 Chain rule. 2.6 Dot product rule. ... We have the following generalizations of the product rule in single-variable ...

  5. List of calculus topics - Wikipedia

    en.wikipedia.org/wiki/List_of_calculus_topics

    Sum rule in differentiation; Constant factor rule in differentiation; Linearity of differentiation; Power rule; Chain rule; Local linearization; Product rule; Quotient rule; Inverse functions and differentiation; Implicit differentiation; Stationary point. Maxima and minima; First derivative test; Second derivative test; Extreme value theorem ...

  6. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    Integration by parts can be extended to functions of several variables by applying a version of the fundamental theorem of calculus to an appropriate product rule. There are several such pairings possible in multivariate calculus, involving a scalar-valued function u and vector-valued function (vector field) V .

  7. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    The product rule and chain rule, [24] the notions of higher derivatives and Taylor series, [25] and of analytic functions [26] were used by Isaac Newton in an idiosyncratic notation which he applied to solve problems of mathematical physics. In his works, Newton rephrased his ideas to suit the mathematical idiom of the time, replacing ...

  8. Reciprocal rule - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_rule

    Also, one can readily deduce the quotient rule from the reciprocal rule and the product rule. The reciprocal rule states that if f is differentiable at a point x and f(x) ≠ 0 then g(x) = 1/f(x) is also differentiable at x and ′ = ′ ().

  9. Triple product rule - Wikipedia

    en.wikipedia.org/wiki/Triple_product_rule

    Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables = + = + Substitute dy into dx = [() + ()] + By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero () + = Subtracting the second term and multiplying by its inverse gives the triple ...