enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    There are algorithms for many NP-complete problems, such as the knapsack problem, the traveling salesman problem, and the Boolean satisfiability problem, that can solve to optimality many real-world instances in reasonable time. The empirical average-case complexity (time vs. problem

  3. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    The NP-complete problems represent the hardest problems in NP. If some NP-complete problem has a polynomial time algorithm, all problems in NP do. The set of NP-complete problems is often denoted by NP-C or NPC. Although a solution to an NP-complete problem can be verified "quickly", there is no known way to find a solution quickly.

  4. Boolean satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Boolean_satisfiability_problem

    Although this problem seems easier, Valiant and Vazirani have shown [25] that if there is a practical (i.e. randomized polynomial-time) algorithm to solve it, then all problems in NP can be solved just as easily. MAX-SAT, the maximum satisfiability problem, is an FNP generalization of SAT. It asks for the maximum number of clauses which can be ...

  5. Algorithm - Wikipedia

    en.wikipedia.org/wiki/Algorithm

    A linear programming algorithm can solve such a problem if it can be proved that all restrictions for integer values are superficial, i.e., the solutions satisfy these restrictions anyway. In the general case, a specialized algorithm or an algorithm that finds approximate solutions is used, depending on the difficulty of the problem.

  6. NP (complexity) - Wikipedia

    en.wikipedia.org/wiki/NP_(complexity)

    The hardest problems in NP are called NP-complete problems. An algorithm solving such a problem in polynomial time is also able to solve any other NP problem in polynomial time. If P were in fact equal to NP, then a polynomial-time algorithm would exist for solving NP-complete, and by corollary, all NP problems. [4]

  7. List of unsolved problems in computer science - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    NC = P problem The P vs NP problem is a major unsolved question in computer science that asks whether every problem whose solution can be quickly verified by a computer (NP) can also be quickly solved by a computer (P). This question has profound implications for fields such as cryptography, algorithm design, and computational theory.

  8. NP-hardness - Wikipedia

    en.wikipedia.org/wiki/NP-hardness

    That is, assuming a solution for H takes 1 unit time, H ' s solution can be used to solve L in polynomial time. [1] [2] As a consequence, finding a polynomial time algorithm to solve a single NP-hard problem would give polynomial time algorithms for all the problems in the complexity class NP.

  9. Halting problem - Wikipedia

    en.wikipedia.org/wiki/Halting_problem

    To see this, assume that there is an algorithm PHSR ("partial halting solver recognizer") to do that. Then it can be used to solve the halting problem, as follows: To test whether input program x halts on y, construct a program p that on input (x,y) reports true and diverges on all other inputs. Then test p with PHSR.