enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Delta-v - Wikipedia

    en.wikipedia.org/wiki/Delta-v

    Delta-v (also known as "change in velocity"), symbolized as and pronounced /dɛltə viː/, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver.

  3. Delta-v budget - Wikipedia

    en.wikipedia.org/wiki/Delta-v_budget

    The delta-v requirements for sub-orbital spaceflight are much lower than for orbital spaceflight. For the Ansari X Prize altitude of 100 km, Space Ship One required a delta-v of roughly 1.4 km/s. To reach the initial low Earth orbit of the International Space Station of 300 km (now 400 km), the delta-v is over six times higher, about 9.4 km/s.

  4. Specific orbital energy - Wikipedia

    en.wikipedia.org/wiki/Specific_orbital_energy

    Thus, when applying delta-v to increase specific orbital energy, this is done most efficiently if a is applied in the direction of v, and when |v| is large. If the angle between v and g is obtuse, for example in a launch and in a transfer to a higher orbit, this means applying the delta-v as early as possible and at full capacity.

  5. Orbital inclination change - Wikipedia

    en.wikipedia.org/wiki/Orbital_inclination_change

    The delta-v required is the vector change in velocity between the two planes at that point. However, maximum efficiency of inclination changes are achieved at apoapsis, (or apogee), where orbital velocity is the lowest. In some cases, it can require less total delta-v to raise the satellite into a higher orbit, change the orbit plane at the ...

  6. Characteristic energy - Wikipedia

    en.wikipedia.org/wiki/Characteristic_energy

    Every object in a 2-body ballistic trajectory has a constant specific orbital energy equal to the sum of its specific kinetic and specific potential energy: = = =, where = is the standard gravitational parameter of the massive body with mass , and is the radial distance from its center. As an object in an escape trajectory moves outward, its ...

  7. Spacecraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_flight_dynamics

    A delta-v budget will add up all the propellant requirements, or determine the total delta-v available from a given amount of propellant, for the mission. Most on-orbit maneuvers can be modeled as impulsive , that is as a near-instantaneous change in velocity, with minimal loss of accuracy.

  8. Bi-elliptic transfer - Wikipedia

    en.wikipedia.org/wiki/Bi-elliptic_transfer

    Evidently, the bi-elliptic orbit spends more of its delta-v closer to the planet (in the first burn). This yields a higher contribution to the specific orbital energy and, due to the Oberth effect, is responsible for the net reduction in required delta-v.

  9. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    Maneuvering into a large circular orbit, e.g. a geostationary orbit, requires a larger delta-v than an escape orbit, although the latter implies getting arbitrarily far away and having more energy than needed for the orbital speed of the circular orbit. It is also a matter of maneuvering into the orbit.