Search results
Results from the WOW.Com Content Network
Given a Riemannian metric g, the scalar curvature Scal is defined as the trace of the Ricci curvature tensor with respect to the metric: [1] = . The scalar curvature cannot be computed directly from the Ricci curvature since the latter is a (0,2)-tensor field; the metric must be used to raise an index to obtain a (1,1)-tensor field in order to take the trace.
Notions of Ricci curvature on discrete manifolds have been defined on graphs and networks, where they quantify local divergence properties of edges. Ollivier's Ricci curvature is defined using optimal transport theory. [4] A different (and earlier) notion, Forman's Ricci curvature, is based on topological arguments. [5]
The variation formula computations above define the principal symbol of the mapping which sends a pseudo-Riemannian metric to its Riemann tensor, Ricci tensor, or scalar curvature.
Although individually, the Weyl tensor and Ricci tensor do not in general determine the full curvature tensor, the Riemann curvature tensor can be decomposed into a Weyl part and a Ricci part. This decomposition is known as the Ricci decomposition, and plays an important role in the conformal geometry of Riemannian manifolds.
Two more generalizations of curvature are the scalar curvature and Ricci curvature. In a curved surface such as the sphere, the area of a disc on the surface differs from the area of a disc of the same radius in flat space. This difference (in a suitable limit) is measured by the scalar curvature.
This implies that the Ricci curvature is given by R jk = (n – 1)κg jk and the scalar curvature is n(n – 1)κ, where n is the dimension of the manifold. In particular, every Riemannian manifold of constant curvature is an Einstein manifold, thereby having constant scalar curvature.
The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection. It is a central mathematical tool in the theory of general relativity, the modern theory of gravity. The curvature of spacetime is in principle observable via the geodesic deviation equation.
Owing to the Hamilton–Ivey estimate, these new Ricci flows have nonnegative curvature. Hamilton's Li–Yau inequality can then be applied to see that the scalar curvature is, at each point, a nondecreasing (nonnegative) function of time. This is a powerful result that allows many further arguments to go through.