Search results
Results from the WOW.Com Content Network
If the energy of the forming bonds is greater than the energy of the breaking bonds, then energy is released. This is known as an exothermic reaction. However, if more energy is needed to break the bonds than the energy being released, energy is taken up. Therefore, it is an endothermic reaction. [7]
The opposite of an exothermic process is an endothermic process, one that absorbs energy, usually in the form of heat. [2] The concept is frequently applied in the physical sciences to chemical reactions where chemical bond energy is converted to thermal energy (heat).
The reaction is usually endothermic as heat is required to break chemical bonds in the compound undergoing decomposition. If decomposition is sufficiently exothermic, a positive feedback loop is created producing thermal runaway and possibly an explosion or other chemical reaction. Thermal decomposition is a chemical reaction where heat is a ...
The bond dissociation energy (enthalpy) [4] is also referred to as bond disruption energy, bond energy, bond strength, or binding energy (abbreviation: BDE, BE, or D). It is defined as the standard enthalpy change of the following fission: R—X → R + X. The BDE, denoted by Dº(R—X), is usually derived by the thermochemical equation,
An energy profile of an exothermic reaction. In an exothermic reaction, by definition, the enthalpy change has a negative value: ΔH = H products - H reactants < 0. where a larger value (the higher energy of the reactants) is subtracted from a smaller value (the lower energy of the products). For example, when hydrogen burns: 2H 2 (g) + O 2 (g ...
In thermodynamics, the enthalpy of mixing (also heat of mixing and excess enthalpy) is the enthalpy liberated or absorbed from a substance upon mixing. [1] When a substance or compound is combined with any other substance or compound, the enthalpy of mixing is the consequence of the new interactions between the two substances or compounds. [1]
The energy released by the solvation of the ammonium ions and nitrate ions is less than the energy absorbed in breaking up the ammonium nitrate ionic lattice and the attractions between water molecules. Dissolving potassium hydroxide is exothermic, as more energy is released during solvation than is used in breaking up the solute and solvent.
Endothermic reactions absorb heat, while exothermic reactions release heat. Thermochemistry coalesces the concepts of thermodynamics with the concept of energy in the form of chemical bonds. The subject commonly includes calculations of such quantities as heat capacity, heat of combustion, heat of formation, enthalpy, entropy, and free energy.