enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Lucas numbers have L 1 = 1, L 2 = 3, and L n = L n−1 + L n−2. Primefree sequences use the Fibonacci recursion with other starting points to generate sequences in which all numbers are composite. Letting a number be a linear function (other than the sum) of the 2 preceding numbers. The Pell numbers have P n = 2P n−1 + P n−2.

  3. Prefix sum - Wikipedia

    en.wikipedia.org/wiki/Prefix_sum

    Express each term of the final sequence y 0, y 1, y 2, ... as the sum of up to two terms of these intermediate sequences: y 0 = x 0, y 1 = z 0, y 2 = z 0 + x 2, y 3 = w 1, etc. After the first value, each successive number y i is either copied from a position half as far through the w sequence, or is the previous value added to one value in the ...

  4. Lucas number - Wikipedia

    en.wikipedia.org/wiki/Lucas_number

    As with the Fibonacci numbers, each Lucas number is defined to be the sum of its two immediately previous terms, thereby forming a Fibonacci integer sequence. The first two Lucas numbers are L 0 = 2 {\displaystyle L_{0}=2} and L 1 = 1 {\displaystyle L_{1}=1} , which differs from the first two Fibonacci numbers F 0 = 0 {\displaystyle F_{0}=0 ...

  5. Abundant number - Wikipedia

    en.wikipedia.org/wiki/Abundant_number

    The smallest odd integer with abundancy index exceeding 3 is 1018976683725 = 3 3 × 5 2 × 7 2 × 11 × 13 × 17 × 19 × 23 × 29. [8] If p = (p 1, ..., p n) is a list of primes, then p is termed abundant if some integer composed only of primes in p is abundant. A necessary and sufficient condition for this is that the product of p i /(p i − ...

  6. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    2.1 Low-order polylogarithms. 2.2 ... 7.2 Sum of reciprocal of ... allowing the result to be computed in constant time even when the series contains a large number of ...

  7. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...

  8. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    [21] [22] [23] The weak conjecture is implied by the strong conjecture, as if n − 3 is a sum of two primes, then n is a sum of three primes. However, the converse implication and thus the strong Goldbach conjecture would remain unproven if Helfgott's proof is correct.

  9. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is and the common difference of successive members is , then the -th term of the sequence is given by