enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23

  3. Lattice problem - Wikipedia

    en.wikipedia.org/wiki/Lattice_problem

    This is an illustration of the closest vector problem (basis vectors in blue, external vector in green, closest vector in red). In CVP, a basis of a vector space V and a metric M (often L 2) are given for a lattice L, as well as a vector v in V but not necessarily in L. It is desired to find the vector in L closest to v (as measured by M).

  4. Vector optimization - Wikipedia

    en.wikipedia.org/wiki/Vector_optimization

    Vector optimization is a subarea of mathematical optimization where optimization problems with a vector-valued objective functions are optimized with respect to a given partial ordering and subject to certain constraints.

  5. Lattice-based cryptography - Wikipedia

    en.wikipedia.org/wiki/Lattice-based_cryptography

    The most important lattice-based computational problem is the shortest vector problem (SVP or sometimes GapSVP), which asks us to approximate the minimal Euclidean length of a non-zero lattice vector. This problem is thought to be hard to solve efficiently, even with approximation factors that are polynomial in , and even with a quantum ...

  6. Short integer solution problem - Wikipedia

    en.wikipedia.org/wiki/Short_integer_solution_problem

    When the quotient polynomial ring is = [] / (+) for =, the ring multiplication . can be efficiently computed by first forming ⁡ (), the nega-circulant matrix of , and then multiplying ⁡ with (()), the embedding coefficient vector of (or, alternatively with (()), the canonical coefficient vector. Moreover, R-SIS problem is a special case of ...

  7. Data-flow analysis - Wikipedia

    en.wikipedia.org/wiki/Data-flow_analysis

    The examples above are problems in which the data-flow value is a set, e.g. the set of reaching definitions (Using a bit for a definition position in the program), or the set of live variables. These sets can be represented efficiently as bit vectors , in which each bit represents set membership of one particular element.

  8. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    A generalized eigenvalue problem (second sense) is the problem of finding a (nonzero) vector v that obeys = where A and B are matrices. If v obeys this equation, with some λ , then we call v the generalized eigenvector of A and B (in the second sense), and λ is called the generalized eigenvalue of A and B (in the second sense) which ...

  9. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Moreover, if the entire vector space V can be spanned by the eigenvectors of T, or equivalently if the direct sum of the eigenspaces associated with all the eigenvalues of T is the entire vector space V, then a basis of V called an eigenbasis can be formed from linearly independent eigenvectors of T.