Ads
related to: derivatives of logs and exponentials worksheets 5th yearteacherspayteachers.com has been visited by 100K+ users in the past month
- Free Resources
Download printables for any topic
at no cost to you. See what's free!
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Packets
Perfect for independent work!
Browse our fun activity packs.
- Free Resources
Search results
Results from the WOW.Com Content Network
Generalising in another direction, the logarithmic derivative of a power (with constant real exponent) is the product of the exponent and the logarithmic derivative of the base: ′ = ′ = ′, just as the logarithm of a power is the product of the exponent and the logarithm of the base.
It can also be useful when applied to functions raised to the power of variables or functions. Logarithmic differentiation relies on the chain rule as well as properties of logarithms (in particular, the natural logarithm, or the logarithm to the base e) to transform products into sums and divisions into subtractions.
The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): () ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.
The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and ()
For example, ln 7.5 is 2.0149..., because e 2.0149... = 7.5. The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1. The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/x from 1 to a [4] (with the area being negative when 0 < a < 1 ...
Ads
related to: derivatives of logs and exponentials worksheets 5th yearteacherspayteachers.com has been visited by 100K+ users in the past month