Search results
Results from the WOW.Com Content Network
Molecular geometry is the three-dimensional arrangement of the atoms that constitute a molecule. It includes the general shape of the molecule as well as bond lengths , bond angles , torsional angles and any other geometrical parameters that determine the position of each atom.
This lists the character tables for the more common molecular point groups used in the study of molecular symmetry. These tables are based on the group-theoretical treatment of the symmetry operations present in common molecules, and are useful in molecular spectroscopy and quantum chemistry. Information regarding the use of the tables, as well ...
The molecular configuration of a molecule is the permanent geometry that results from the spatial arrangement of its bonds. [1] The ability of the same set of atoms to form two or more molecules with different configurations is stereoisomerism. This is distinct from constitutional isomerism which arises from atoms being connected in a different ...
Some inorganic solids dissociate - or crack - into molecular species heating or upon dissolving, e.g. Aluminium chloride. In such cases it is helpful to depict both the molecular and the nonmolecular forms. Some important chemical species cannot be easily represented with simple pictures, e.g. hydrochloric acid and non-stoichiometric compounds.
The term is commonly applied in the field of inorganic chemistry, where diverse structures are observed. The coordination geometry depends on the number, not the type, of ligands bonded to the metal centre as well as their locations. The number of atoms bonded is the coordination number.
In chemistry, trigonal planar is a molecular geometry model with one atom at the center and three atoms at the corners of an equilateral triangle, called peripheral atoms, all in one plane. [1] In an ideal trigonal planar species, all three ligands are identical and all bond angles are 120°. Such species belong to the point group D 3h.
In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron. The bond angles are arccos (− 1 / 3 ) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane ( CH 4 ) [ 1 ] [ 2 ] as well as its heavier analogues .
In chemistry, a trigonal pyramid is a molecular geometry with one atom at the apex and three atoms at the corners of a trigonal base, resembling a tetrahedron (not to be confused with the tetrahedral geometry). When all three atoms at the corners are identical, the molecule belongs to point group C 3v.