enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    Quantum mechanics provides two fundamental examples of the duality between position and momentum, the Heisenberg uncertainty principle ΔxΔp ≥ ħ/2 stating that position and momentum cannot be simultaneously known to arbitrary precision, and the de Broglie relation p = ħk which states the momentum and wavevector of a free particle are ...

  3. Light front quantization - Wikipedia

    en.wikipedia.org/wiki/Light_front_quantization

    In light-front coordinates, + = +, =, the spatial coordinates ,, do not enter symmetrically: the coordinate is distinguished, whereas and do not appear at all. This non-covariant definition destroys the spatial symmetry that, in its turn, results in a few difficulties related to the fact that some transformation of the reference frame may ...

  4. Canonical coordinates - Wikipedia

    en.wikipedia.org/wiki/Canonical_coordinates

    Canonical coordinates are defined as a special set of coordinates on the cotangent bundle of a manifold.They are usually written as a set of (,) or (,) with the x ' s or q ' s denoting the coordinates on the underlying manifold and the p ' s denoting the conjugate momentum, which are 1-forms in the cotangent bundle at point q in the manifold.

  5. Geometric quantization - Wikipedia

    en.wikipedia.org/wiki/Geometric_quantization

    In mathematical physics, geometric quantization is a mathematical approach to defining a quantum theory corresponding to a given classical theory.It attempts to carry out quantization, for which there is in general no exact recipe, in such a way that certain analogies between the classical theory and the quantum theory remain manifest.

  6. Quantum geometry - Wikipedia

    en.wikipedia.org/wiki/Quantum_geometry

    In quantum mechanics, idealized situations occur in rectangular Cartesian coordinates, such as the potential well, particle in a box, quantum harmonic oscillator, and more realistic approximations in spherical polar coordinates such as electrons in atoms and molecules. For generality, a formalism which can be used in any coordinate system is ...

  7. Noncommutative quantum field theory - Wikipedia

    en.wikipedia.org/wiki/Noncommutative_quantum...

    The implication is that a quantum field theory on noncommutative spacetime can be interpreted as a low energy limit of the theory of open strings. Two papers, one by Sergio Doplicher , Klaus Fredenhagen and John Roberts [ 5 ] and the other by D. V. Ahluwalia, [ 6 ] set out another motivation for the possible noncommutativity of space-time.

  8. Canonical commutation relation - Wikipedia

    en.wikipedia.org/wiki/Canonical_commutation_relation

    According to the correspondence principle, in certain limits the quantum equations of states must approach Hamilton's equations of motion.The latter state the following relation between the generalized coordinate q (e.g. position) and the generalized momentum p: {˙ = = {,}; ˙ = = {,}.

  9. Quantization (physics) - Wikipedia

    en.wikipedia.org/wiki/Quantization_(physics)

    Canonical quantization develops quantum mechanics from classical mechanics. One introduces a commutation relation among canonical coordinates. Technically, one converts coordinates to operators, through combinations of creation and annihilation operators. The operators act on quantum states of the theory.