Search results
Results from the WOW.Com Content Network
Quantum mechanics is described according to von Neumann; in particular, the pure states are given by the rays, i.e. the one-dimensional subspaces, of some separable complex Hilbert space. In the following, the scalar product of Hilbert space vectors Ψ and Φ is denoted by Ψ , Φ {\displaystyle \langle \Psi ,\Phi \rangle } , and the norm of Ψ ...
Canonical coordinates are defined as a special set of coordinates on the cotangent bundle of a manifold.They are usually written as a set of (,) or (,) with the x ' s or q ' s denoting the coordinates on the underlying manifold and the p ' s denoting the conjugate momentum, which are 1-forms in the cotangent bundle at point q in the manifold.
The implication is that a quantum field theory on noncommutative spacetime can be interpreted as a low energy limit of the theory of open strings. Two papers, one by Sergio Doplicher , Klaus Fredenhagen and John Roberts [ 5 ] and the other by D. V. Ahluwalia, [ 6 ] set out another motivation for the possible noncommutativity of space-time.
Quantum mechanics provides two fundamental examples of the duality between position and momentum, the Heisenberg uncertainty principle ΔxΔp ≥ ħ/2 stating that position and momentum cannot be simultaneously known to arbitrary precision, and the de Broglie relation p = ħk which states the momentum and wavevector of a free particle are ...
In mathematics and physics, a quantum graph is a linear, network-shaped structure of vertices connected on edges (i.e., a graph) in which each edge is given a length and where a differential (or pseudo-differential) equation is posed on each edge. An example would be a power network consisting of power lines (edges) connected at transformer ...
A fundamental physical constant occurring in quantum mechanics is the Planck constant, h. A common abbreviation is ħ = h /2 π , also known as the reduced Planck constant or Dirac constant . Quantity (common name/s)
In quantum mechanics, a complete set of commuting observables (CSCO) is a set of commuting operators whose common eigenvectors can be used as a basis to express any quantum state. In the case of operators with discrete spectra, a CSCO is a set of commuting observables whose simultaneous eigenspaces span the Hilbert space and are linearly ...
It was eventually realized that special relativity was inconsistent with single-particle quantum mechanics, so that all particles are now described relativistically by quantum fields. When the canonical quantization procedure is applied to a field, such as the electromagnetic field, the classical field variables become quantum operators .