enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mueller calculus - Wikipedia

    en.wikipedia.org/wiki/Mueller_calculus

    Mueller calculus is a matrix method for manipulating Stokes vectors, which represent the polarization of light. It was developed in 1943 by Hans Mueller. In this technique, the effect of a particular optical element is represented by a Mueller matrix—a 4×4 matrix that is an overlapping generalization of the Jones matrix.

  3. Optical rotation - Wikipedia

    en.wikipedia.org/wiki/Optical_rotation

    Optical rotation, also known as polarization rotation or circular birefringence, is the rotation of the orientation of the plane of polarization about the optical axis of linearly polarized light as it travels through certain materials. Circular birefringence and circular dichroism are the manifestations of optical activity.

  4. Stokes parameters - Wikipedia

    en.wikipedia.org/wiki/Stokes_parameters

    The Stokes I, Q, U and V parameters. The Stokes parameters are a set of values that describe the polarization state of electromagnetic radiation.They were defined by George Gabriel Stokes in 1851, [1] [2] as a mathematically convenient alternative to the more common description of incoherent or partially polarized radiation in terms of its total intensity (I), (fractional) degree of ...

  5. Jones calculus - Wikipedia

    en.wikipedia.org/wiki/Jones_calculus

    In optics, polarized light can be described using the Jones calculus, [1] invented by R. C. Jones in 1941. Polarized light is represented by a Jones vector , and linear optical elements are represented by Jones matrices .

  6. Optical path length - Wikipedia

    en.wikipedia.org/wiki/Optical_path_length

    The optical path difference between the paths taken by two identical waves can then be used to find the phase change. Finally, using the phase change, the interference between the two waves can be calculated. Fermat's principle states that the path light takes between two points is the path that has the minimum optical path length.

  7. Specific rotation - Wikipedia

    en.wikipedia.org/wiki/Specific_rotation

    Specific rotation is an intensive property, distinguishing it from the more general phenomenon of optical rotation. As such, the observed rotation ( α ) of a sample of a compound can be used to quantify the enantiomeric excess of that compound, provided that the specific rotation ( [α] ) for the enantiopure compound is known.

  8. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    Applications include Fabry–Pérot interferometers, antireflection coatings, and optical filters. A quantitative analysis of these effects is based on the Fresnel equations, but with additional calculations to account for interference. The transfer-matrix method, or the recursive Rouard method [18] can be used to solve multiple-surface problems.

  9. Cardinal point (optics) - Wikipedia

    en.wikipedia.org/wiki/Cardinal_point_(optics)

    An optical system is rotationally symmetric if its imaging properties are unchanged by any rotation about some axis. This (unique) axis of rotational symmetry is the optical axis of the system. Optical systems can be folded using plane mirrors; the system is still considered to be rotationally symmetric if it possesses rotational symmetry when ...