Search results
Results from the WOW.Com Content Network
Optical rotation, also known as polarization rotation or circular birefringence, is the rotation of the orientation of the plane of polarization about the optical axis of linearly polarized light as it travels through certain materials. Circular birefringence and circular dichroism are the manifestations of optical activity.
Applications include Fabry–Pérot interferometers, antireflection coatings, and optical filters. A quantitative analysis of these effects is based on the Fresnel equations, but with additional calculations to account for interference. The transfer-matrix method, or the recursive Rouard method [18] can be used to solve multiple-surface problems.
These rotations are identical to beam unitary splitter transformation in optical physics given by R ( θ ) = ( r t ′ t r ′ ) {\displaystyle R(\theta )={\begin{pmatrix}r&t'\\t&r'\end{pmatrix}}} where the primed and unprimed coefficients represent beams incident from opposite sides of the beam splitter.
Each optical element (surface, interface, mirror, or beam travel) is described by a 2 × 2 ray transfer matrix which operates on a vector describing an incoming light ray to calculate the outgoing ray. Multiplication of the successive matrices thus yields a concise ray transfer matrix describing the entire optical system.
Mueller calculus is a matrix method for manipulating Stokes vectors, which represent the polarization of light. It was developed in 1943 by Hans Mueller. In this technique, the effect of a particular optical element is represented by a Mueller matrix—a 4×4 matrix that is an overlapping generalization of the Jones matrix.
The Stokes I, Q, U and V parameters. The Stokes parameters are a set of values that describe the polarization state of electromagnetic radiation.They were defined by George Gabriel Stokes in 1851, [1] [2] as a mathematically convenient alternative to the more common description of incoherent or partially polarized radiation in terms of its total intensity (I), (fractional) degree of ...
A polarimeter [1] is a scientific instrument used to measure optical rotation: the angle of rotation caused by passing linearly polarized light through an optically active substance. [ 2 ] Some chemical substances are optically active, and linearly polarized (uni-directional) light will rotate either to the left (counter-clockwise) or right ...
The optical path difference between the paths taken by two identical waves can then be used to find the phase change. Finally, using the phase change, the interference between the two waves can be calculated. Fermat's principle states that the path light takes between two points is the path that has the minimum optical path length.