Search results
Results from the WOW.Com Content Network
A circle through S, V and B also passes through J. Conversely, if a point, B on the parabola VG is to be found so that the area of the sector SVB is equal to a specified value, determine the point J on VX and construct a circle through S, V and J.
These results seem to run counter the general result since circles are special cases of conics. However, in a pappian projective plane a conic is a circle only if it passes through two specific points on the line at infinity, so a circle is determined by five non-collinear points, three in the affine plane and these two special points. Similar ...
The circle S passes through P. The circle S and the curve C have the common tangent line at P, and therefore the common normal line. Close to P, the distance between the points of the curve C and the circle S in the normal direction decays as the cube or a higher power of the distance to P in the tangential direction.
The graph of a function on its own does not determine the codomain. It is common [3] to use both terms function and graph of a function since even if considered the same object, they indicate viewing it from a different perspective. Graph of the function () = over the interval [−2,+3]. Also shown are the two real roots and the local minimum ...
Consequently, any point not on the axis of symmetry lies on two confocal parabolas which intersect orthogonally (see below). A circle is an ellipse with both foci coinciding at the center. Circles that share the same focus are called concentric circles, and they orthogonally intersect any line passing through that center.
A family of conic sections of varying eccentricity share a focus point F and directrix line L, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally ...
As noted above, the inverse with respect to a circle of a curve of degree n has degree at most 2n.The degree is exactly 2n unless the original curve passes through the point of inversion or it is circular, meaning that it contains the circular points, (1, ±i, 0), when considered as a curve in the complex projective plane.
The part of the graph of sin x in the range from 0° to 180° "looks like" part of a parabola through the points (0, 0) and (180, 0). The general form of such a parabola is (). The parabola that also passes through (90, 1) (which is the point corresponding to the value sin(90°) = 1) is