enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  3. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .

  4. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    Effect of applying various 2D affine transformation matrices on a unit square. Note that the reflection matrices are special cases of the scaling matrix. Affine transformations on the 2D plane can be performed in three dimensions. Translation is done by shearing parallel to the xy plane, and rotation is performed around the z axis.

  5. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    Rotation matrices have a determinant of +1, and reflection matrices have a determinant of −1. The set of all orthogonal two-dimensional matrices together with matrix multiplication form the orthogonal group: O(2). The following table gives examples of rotation and reflection matrix :

  6. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    That it is an orthogonal matrix means that its rows are a set of orthogonal unit vectors (so they are an orthonormal basis) as are its columns, making it simple to spot and check if a matrix is a valid rotation matrix. Above-mentioned Euler angles and axis–angle representations can be easily converted to a rotation matrix.

  7. Active and passive transformation - Wikipedia

    en.wikipedia.org/wiki/Active_and_passive...

    A rotation of the vector through an angle θ in counterclockwise direction is given by the rotation matrix: = (⁡ ⁡ ⁡ ⁡), which can be viewed either as an active transformation or a passive transformation (where the above matrix will be inverted), as described below.

  8. Kabsch algorithm - Wikipedia

    en.wikipedia.org/wiki/Kabsch_algorithm

    Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix:

  9. Givens rotation - Wikipedia

    en.wikipedia.org/wiki/Givens_rotation

    For the same reason, any rotation matrix in 3D can be decomposed in a product of three of these rotation operators. The meaning of the composition of two Givens rotations g ∘ f is an operator that transforms vectors first by f and then by g, being f and g rotations about one axis of basis of the space